Swarms Logo
Enterprise Multi-Agent Stack

Swarms Product Suite

Build, deploy, and scale autonomous AI agent swarms with a comprehensive stack of frameworks, interfaces, and cloud services.

Swarms Python

The flagship enterprise-grade production-ready multi-agent orchestration framework in Python. Build complex agent systems with sequential workflows, parallel processing, and mixture architectures.

Python
Production-Ready

Swarms Python in Code

Install and start using Swarms Python with a minimal setup.

Install

bash
pip install -U swarms swarms-memory

Example

python
import os
from dotenv import load_dotenv
from swarm_models import OpenAIChat
from swarms import Agent, GroupChat, expertise_based


if __name__ == "__main__":

    load_dotenv()

    # Get the OpenAI API key from the environment variable
    api_key = os.getenv("OPENAI_API_KEY")

    # Create an instance of the OpenAIChat class
    model = OpenAIChat(
        openai_api_key=api_key,
        model_name="gpt-4o-mini",
        temperature=0.1,
    )

    # Example agents
    agent1 = Agent(
        agent_name="Financial-Analysis-Agent",
        system_prompt="You are a financial analyst specializing in investment strategies.",
        llm=model,
        max_loops=1,
        autosave=False,
        dashboard=False,
        verbose=True,
        dynamic_temperature_enabled=True,
        user_name="swarms_corp",
        retry_attempts=1,
        context_length=200000,
        output_type="string",
        streaming_on=False,
    )

    agent2 = Agent(
        agent_name="Tax-Adviser-Agent",
        system_prompt="You are a tax adviser who provides clear and concise guidance on tax-related queries.",
        llm=model,
        max_loops=1,
        autosave=False,
        dashboard=False,
        verbose=True,
        dynamic_temperature_enabled=True,
        user_name="swarms_corp",
        retry_attempts=1,
        context_length=200000,
        output_type="string",
        streaming_on=False,
    )

    agents = [agent1, agent2]

    chat = GroupChat(
        name="Investment Advisory",
        description="Financial and tax analysis group",
        agents=agents,
        speaker_fn=expertise_based,
    )

    history = chat.run(
        "How to optimize tax strategy for investments?"
    )
    print(history.model_dump_json(indent=2))

Swarms Rust

A high-performance implementation of the Swarms framework in Rust, designed for maximum efficiency and safety. Perfect for systems requiring blazing-fast performance and minimal resource usage.

Swarms Rust in Code

Install and start using Swarms Rust with a minimal setup.

Install

bash
cargo add swarm-rs

Example

rust
use std::env;

use anyhow::Result;
use swarms_rs::llm::provider::openai::OpenAI;
use swarms_rs::structs::concurrent_workflow::ConcurrentWorkflow;

#[tokio::main]
async fn main() -> Result<()> {
    dotenv::dotenv().ok();

    let subscriber = tracing_subscriber::fmt::Subscriber::builder()
        .with_env_filter(tracing_subscriber::EnvFilter::from_default_env())
        .with_line_number(true)
        .with_file(true)
        .finish();
    tracing::subscriber::set_global_default(subscriber)?;

    let base_url = env::var("DEEPSEEK_BASE_URL").unwrap();
    let api_key = env::var("DEEPSEEK_API_KEY").unwrap();
    let client = OpenAI::from_url(base_url, api_key).set_model("deepseek-chat");

    let agent_1 = client
        .agent_builder()
        .agent_name("Agent 1")
        .system_prompt("You are Agent 1, responsible for planning.")
        .user_name("M4n5ter")
        .max_loops(1)
        .temperature(0.3)
        .enable_autosave()
        .save_state_dir("./temp")
        .add_stop_word("<DONE>")
        .build();

    let agent_2 = client
        .agent_builder()
        .agent_name("Agent 2")
        .system_prompt("You are Agent 2, responsible for solving the problem.")
        .user_name("M4n5ter")
        .max_loops(1)
        .temperature(0.3)
        .enable_autosave()
        .save_state_dir("./temp")
        .add_stop_word("<DONE>")
        .build();

    let agents = vec![agent_1, agent_2]
        .into_iter()
        .map(|a| Box::new(a) as _)
        .collect::<Vec<_>>();

    let workflow = ConcurrentWorkflow::builder()
        .name("ConcurrentWorkflow")
        .metadata_output_dir("./temp/concurrent_workflow/metadata")
        .description("A Workflow to solve a problem with two agents.")
        .agents(agents)
        .build();

    let result = workflow.run("How to learn Rust?").await?;

    println!("{}", serde_json::to_string_pretty(&result)?);
    Ok(())
}

Swarms API

Enterprise-grade Agent Swarm Management API for deploying and orchestrating sophisticated AI agent workflows in the cloud without managing infrastructure.

Cloud
Enterprise

Swarms API in Code

Install and start using Swarms API with a minimal setup.

Example

python
import requests

API_KEY = "your-api-key"
BASE_URL = "https://api.swarms.world"

headers = {"x-api-key": API_KEY, "Content-Type": "application/json"}

payload = {
  "name": "Financial Analysis Swarm",
  "agents": [
      {
          "agent_name": "Market Analyst",
          "description": "Analyzes market trends",
          "system_prompt": "You are a financial analyst expert.",
          "model_name": "gpt-4o",
          "role": "worker"
      },
      {
          "agent_name": "Economic Forecaster",
          "description": "Predicts economic trends",
          "system_prompt": "You are an expert in economic forecasting.",
          "model_name": "gpt-4o",
          "role": "worker"
      }
  ],
  "swarm_type": "HierarchicalSwarm",
  "task": "What are the best ETFs for AI and tech?"
}

response = requests.post(
  f"{BASE_URL}/v1/swarm/completions",
  headers=headers,
  json=payload
)

print(response.json())
Swarms Chat Multi-Agent Interface - No-Code Conversational AI Agent System Dashboard

Swarms Chat

A no-code interface to interact with your swarm through natural language. Build, test, and deploy conversational agent systems without writing a single line of code.

No-Code

Swarms Enterprise

Custom deployment options with dedicated infrastructure, enhanced security features, and SLAs for enterprise customers with mission-critical requirements.

Enterprise
Custom Deployment
Enterprise-Grade

Enterprise-Grade Features

Swarms provides everything you need to build powerful multi-agent systems for production use.

🏢 Enterprise Architecture

Features

  • Production-Ready Infrastructure
  • High Reliability Systems
  • Modular Design
  • Comprehensive Logging

Benefits

  • Reduced downtime
  • Easier maintenance
  • Better debugging
  • Enhanced monitoring
🤖 Agent Orchestration

Features

  • Hierarchical Swarms
  • Parallel Processing
  • Sequential Workflows
  • Graph-based Workflows
  • Dynamic Agent Rearrangement

Benefits

  • Complex task handling
  • Improved performance
  • Flexible workflows
  • Optimized execution
🔄 Integration Capabilities

Features

  • Multi-Model Support
  • Custom Agent Creation
  • Extensive Tool Library
  • Multiple Memory Systems

Benefits

  • Provider flexibility
  • Custom solutions
  • Extended functionality
  • Enhanced memory management
📈 Scalability

Features

  • Concurrent Processing
  • Resource Management
  • Load Balancing
  • Horizontal Scaling

Benefits

  • Higher throughput
  • Efficient resource use
  • Better performance
  • Easy scaling
🛠️ Developer Tools

Features

  • Simple API
  • Extensive Documentation
  • Active Community
  • CLI Tools

Benefits

  • Faster development
  • Easy learning curve
  • Community support
  • Quick deployment
🔐 Security Features

Features

  • Error Handling
  • Rate Limiting
  • Monitoring Integration
  • Audit Logging

Benefits

  • Improved reliability
  • API protection
  • Better monitoring
  • Enhanced tracking
📊 Advanced Features

Features

  • SpreadsheetSwarm
  • Group Chat
  • Agent Registry
  • Mixture of Agents

Benefits

  • Mass agent management
  • Collaborative AI
  • Centralized control
  • Complex solutions
🔌 Provider Support

Features

  • OpenAI
  • Anthropic
  • ChromaDB
  • Custom Providers

Benefits

  • Provider flexibility
  • Storage options
  • Custom integration
  • Vendor independence
💪 Production Features

Features

  • Automatic Retries
  • Async Support
  • Environment Management
  • Type Safety

Benefits

  • Better reliability
  • Improved performance
  • Easy configuration
  • Safer code

Get Started Today

Sign up now and get $5 in free API credits. Join the marketplace and start building with Swarms.